算数

ちゅう い こう 注 意事項

- 1. 「開始」の合図があるまで、問題をひらいてはいけません。
- 2. 簡 は8ページにわたって、1 から 6 まであります。
- 3. テストの内容に関する質問は一切できません。
- 4. 答えは、答問の下部にある解答記入欄に記入してください。
- 5. 計算式や考え方・途中過程は、各間の余白を使いなさい。
- 6. 気分が麗くなったとき、筆記用臭を焼に落としたときなどは、 手を挙げて監督者に含図してください。
- 7. 「終っず」の各図があったら、すぐに筆記用具を置いて、監督者の 指示にしたがってください。

受験番号		
------	--	--

- 1 次の計算をしなさい。
 - (1) $1266 + 744 \div 24 4 \times 18$

答_____

(2) $40000 \times 6000 \times 0.0125 \div 30000$

(3) $12-4 \div \{31-(9-2)\times 3\}$

答_____

(4) $6\frac{3}{10} \div 0.25 \times 3.25 - 2\frac{3}{5} \div 0.5 \times 3.25$

答

答

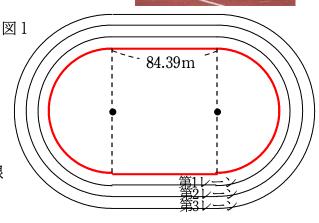
- [2] 次の問いに答えなさい。
 - (1) $20\div19\times18\div17\times16\div15\times\dots\div3\times2\div1\times$ が整数になるとき、 に当てはまる最も小さい整数を求めなさい。

答	
---	--

- (2) 次のア〜カに入る、最も適切な言葉や数を解答らんに記入しなさい。
- ① 円周率とは、ひとつの円の ア の長さが イ の長さの何倍になっているかを表す数です。
- ②素数とは、ウとその数自身以外にエを持たない数です。
- ③ 2つの数の オ が カ になるとき、一方の数を他方の数の逆数といいます。

<解答らん>

ア	1	ウ
エ	才	カ


③ 陸上部の明子さん、学くん、園子さんと、啓太先生の4人が陸上競技のトラックを見て議論をしている。次の問いに答えなさい。ただし、円周率は3.14とする。

明子さん 「今年はオリンピックね!昨日テレビで100m走と400m走をやっていたわ。」

学くん 「100m走の世界記録は、ウサインボルト選手の9秒58なんだよね。これは時速

(ア) kmなんだ。ちなみに、ぼくの自己記録は 11秒30なんだよ。」

明子さん 「それはすごいわね。ところで、400m走では右の 写真のようにスタート位置が一列に並んでいない のは何でかしら?」

学くん 「そうすると、1レーン内側のライン(赤い線)のうち、曲線部分の片方の長さは (イ) mだから、半円の半径が求まるね。」

明子さん 「でも、その計算では半径の長さが国際競技連盟規定の36.5mにならないわ。」

啓太先生 「よく気が付いたね。このルールブックを見てごらん。『縁石(えんせき)がグラウンドレベルより50mm高い場合は、300mm外側の地点(半径に300mmを加えた点)を計測点とする』と書いてあるよね。縁石上は走れないから、300mm外側を走ると考えるんだ。規定の半径にこの数字を加えるんだよ。」

明子さん「本当だわ、学くんの計算と規定の長さがほぼ同じになったわ。」

啓太先生 「ところで、先ほどの明子さんの質問だけど、陸上のトラックではレーンの幅(はば)は1.22mと決まっていて、各レーンの1周の長さは各レーンの内側のラインを基準としているのは知っているね?」

明子さん「はい、ルールブックに書いてありますね。」

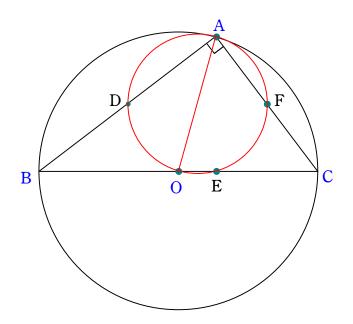
園子さん 「そうすると、第1レーンと第2レーンの半円部分の半径が変わるわね。」

啓太先生 「そこでもうひとつ注意点があるよ。ルールブックには、『2レーンより外側 は幅50mmのラインであるから、ラインの外側の縁(ふち)から200mm (半径 に200mmを加えた点)が計測点となる』とも書いてあるんだ。」 24・PI1

学くん	「そうすると、第1レーンの半径が規定の36.5mにルールブックの300mmを加
	えた長さだとすると、第2レーンの半径は規定に第1レーンの幅とラインの幅
	50mmに 200 mmを加えた $($ つ $)$ mになるから第 2 レーン 1 周の長さは $($ エ $)$
	mとたろわ 」

明子さん 「外側のレーンが不利になるからスタート位置を調整しているのね。」

(1) 空らん(ア)~(エ)にあてはまる数字を答えなさい。ただし、(エ)は小数第3位を四捨五 入して答えること。


(7)	(1)	(ウ)	(工)

(2) 学くんが自己記録で、ウサインボルト選手が世界記録で100mを走ったとすると、ウサインボルト選手がゴールしたときに学くんはゴールの何m手前にいますか、小数第2位を四捨五入して答えなさい。

答	m

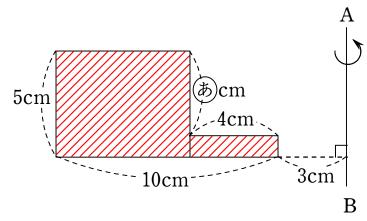
(3) 1レーンと8レーンではトラック1周で何mの差がありますか。小数第2位を四捨五入して答えなさい。

4 右の図のように、AB,BC,CAの長さを順に8cm、10cm、6cmとする直角三角形ABCの辺BCを直径とする円をかくと、その円は点Aを通ります。この円の中心をOとしたとき、OAを直径とする円(赤い円)をかき、その円と三角形ABCの辺AB、BC、CAが交わる点のうち、点O以外の点をそれぞれ、D、E、Fとします。このとき、次の問いに答えなさい。

(1) AD の長さを求めなさい。

答 cm

(2)	赤い円の中心	sをGとします。	点 D と点 G	を直線で結び、	三角形 ADG を
	つくるとき	その三角形 AD	Gの面積を求	めなさい。	


答	cm^2

(3) 点 A と点 E を直線で結び、三角形 AOE をつくるとき、その三角形 AOE の面積を求めなさい。

答 cm²

5	1か	ら13までの数字が1つずつかかれた13枚のカードがあります。	それ	らをよくま	ぜて1列
	に並	なべました。1番右側にあるカードを取り除き、左から2枚ずつ	のカ	1ードをペア	にして、
	それ	iぞれのペアのカードにかかれている数の和をA、B、C、D、	E,	Fとしたと	き、次の
	よう	うになりました。 			
	1	AはDの2倍			
	2	CはDの3倍			
	3	BとFの和は31			
	4	Bのカードはどちらも素数である			
	(5)	Eは10より大きく15より小さい			
	6	Fは取り除いたカードの数字と等しい			
	7	AからFまですべて足すと80になる			
	\L \				
	次0.)問いに答えなさい。			
	(1)	取り除かれたカードの数字はいくつですか。			
				<u>答</u>	
	(2)	Bの2枚のカードの数字はいくつですか。			
	(-)				
			答_	ح	
	(3)	Eはいくつですか。			
				答	
					24 · PJ 1

6 下の図の赤い斜線部分は長方形を2つ組み合わせた図形である。この赤い斜線部分を、直線ABの周りに1回転させてできる立体の体積は2009.6 cm³ である。円周率を3.14 として、次の問いに答えなさい。

(1)(あ)の長さを求めなさい。

/-/-	
答	cm

(2) この立体の表面積を求めなさい。

答 <u>cm²</u> 24 • PJ 1 1 次の計算をしなさい。

(1) $1266 + 744 \div 24 - 4 \times 18$

5点×4

答 1225

(2) $40000 \times 6000 \times 0.0125 \div 30000$

(3) $12-4 \div \{31-(9-2)\times 3\}$

答 100

(4) $6\frac{3}{10} \div 0.25 \times 3.25 - 2\frac{3}{5} \div 0.5 \times 3.25$

 $11\frac{3}{5}$

65

- [2] 次の問いに答えなさい。
 - (1) $20\div19\times18\div17\times16\div15\times\dots\div3\times2\div1\times$ が整数になるとき、 に当てはまる最も小さい整数を求めなさい。

$$\frac{20 \times 18 \times 16 \times 14 \times 12 \times 10 \times 8 \times 6 \times 4 \times 2}{19 \times 17 \times 15 \times 13 \times 11 \times 9 \times 7 \times 5 \times 3 \times 1} = 19 \times 17 \times 13 \times 11$$

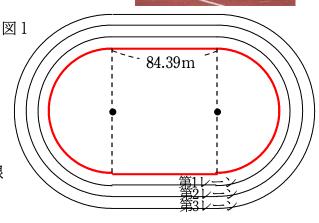
$$= 46189$$

答 46189

- (2) 次のアーカに入る、最も適切な言葉や数を解答らんに記入しなさい。
- ① 円周率とは、ひとつの円のアの長さが 【1の長さの何倍になっているかを表す数です。
- ②素数とは、「ウ」とその数自身以外に「エ」を持たない数です。
- ③ 2つの数の オ が カ になるとき、一方の数を他方の数の逆数といいます。

<解答らん>

ア	1	ウ
円周	直径	1
工	才	カ
約数	積	1


③ 陸上部の明子さん、学くん、園子さんと、啓太先生の4人が陸上競技のトラックを見て議論をしている。次の問いに答えなさい。ただし、円周率は3.14とする。

明子さん 「今年はオリンピックね!昨日テレビで100m走と400m走をやっていたわ。」

学くん 「100m走の世界記録は、ウサインボルト選手の9秒58なんだよね。これは時速

(ア) kmなんだ。ちなみに、ぼくの自己記録は 11秒30なんだよ。」

明子さん 「それはすごいわね。ところで、400m走では右の 写真のようにスタート位置が一列に並んでいない のは何でかしら?」

学くん 「そうすると、1レーン内側のライン(赤い線)のうち、曲線部分の片方の長さは (イ) mだから、半円の半径が求まるね。」

明子さん 「でも、その計算では半径の長さが国際競技連盟規定の36.5mにならないわ。」

啓太先生 「よく気が付いたね。このルールブックを見てごらん。『縁石(えんせき)がグラウンドレベルより50mm高い場合は、300mm外側の地点(半径に300mmを加えた点)を計測点とする』と書いてあるよね。縁石上は走れないから、300mm外側を走ると考えるんだ。規定の半径にこの数字を加えるんだよ。」

明子さん「本当だわ、学くんの計算と規定の長さがほぼ同じになったわ。」

啓太先生 「ところで、先ほどの明子さんの質問だけど、陸上のトラックではレーンの幅(はば)は1.22mと決まっていて、各レーンの1周の長さは各レーンの内側のラインを基準としているのは知っているね?」

明子さん「はい、ルールブックに書いてありますね。」

園子さん 「そうすると、第1レーンと第2レーンの半円部分の半径が変わるわね。」

啓太先生 「そこでもうひとつ注意点があるよ。ルールブックには、『2レーンより外側 は幅50mmのラインであるから、ラインの外側の縁(ふち)から200mm (半径 に200mmを加えた点)が計測点となる』とも書いてあるんだ。」 24・PI1

学くん 「そうすると、第1レーンの半径が規定の36.5mにルールブックの300mmを加えた長さだとすると、第2レーンの半径は規定に第1レーンの幅とラインの幅50mmに200mmを加えた $(\dot{\tau})$ mになるから第2レーン1周の長さは $(\bar{\tau})$ mとなるね。」

明子さん 「外側のレーンが不利になるからスタート位置を調整しているのね。」

(1) 空らん(r)~(エ)にあてはまる数字を答えなさい。ただし、(r)は小数第3位を四捨五入して答えること。

(ア)	(イ)	(ウ)	(工)
37.6	115.61	37.97	407.23

(2) 学くんが自己記録で、ウサインボルト選手が世界記録で100mを走ったとすると、ウサインボルト選手がゴールしたときに学くんはゴールの何m手前にいますか、小数第2位を四捨五入して答えなさい。 $(2)(3) 5 \div \times 2$

学くんの走る速さは

 $100 \div 11 = 8.849 \cdots = 8.85 \, m/$ 秒

ウサインボルト選手が世界記録9秒58でゴールしたとき、学くんがいる地点は

 $8.85 \times 9.58 = 84.783 \ m \tau \delta$

よって

100 - 84.783 = 15.217

(3) 1レーンと8レーンではトラック1周で何mの差がありますか。小数第2位を四捨五入して答えなさい。

8レーンの半径は

 $36.5 + (1.22 + 0.05) \times 7 + 0.2 = 36.5 + 9.09 (m)$

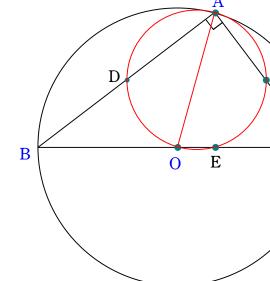
1レーンの半径は

36.5 + 0.3 (m)

よって

 $(36.5+9.09)\times2\times3.14-(36.5+0.3)\times2\times3.14$

 $= (9.09 - 0.3) \times 2 \times 3.14$


 $=8.79\times2\times3.14$

=55.2012

答 55.2 m

24 · PJ 1

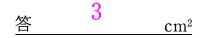
4 右の図のように、AB,BC,CAの長さを順に8cm、10cm、6cmとする直角三角形ABCの辺BCを直径とする円をかくと、その円は点Aを通ります。この円の中心をOとしたとき、OAを直径とする円(赤い円)をかき、その円と三角形ABCの辺AB、BC、CAが交わる点のうち、点O以外の点をそれぞれ、D、E、Fとします。このとき、次の問いに答えなさい。

F

C

6点×3

(1) ADの長さを求めなさい。


赤い円の中心をGとすると、 $GA=GD=\frac{1}{2}AO$ で $\angle A$ は共通だから、 $\triangle GAD \sim \triangle OAB$ (相似比 1:2)より、AD=4 cm

(2) 赤い円の中心を G とします。点 D と点 G を直線で結び、三角形 ADG を つくるとき、その三角形 ADG の面積を求めなさい。

OD は二等辺三角形 OAB を二等分するから、OD
$$\perp$$
AB したがって、 \triangle OAD $=\frac{3\times4}{2}=6~\mathrm{cm}^2$

点 G はAOの中点だから、
$$\triangle$$
ADG= $\frac{1}{2}\triangle$ OAD= 3 cm²

(3) 点 A と点 E を直線で結び、三角形 AOE をつくるとき、その三角形 AOE の面積を 求めなさい。

右図のように、 $\triangle OAE$ の角は $\bigcirc \times$ の関係ができ、 $\bigcirc \bigcirc \times \times = 180^{\circ}$ より、 $\angle OAE = 90^{\circ}$

$$\triangle AEC$$
 $$\triangle ABC$ (相似比 3:5) より、 $\triangle AEC = \frac{1}{2} \times \frac{24}{5} \times \frac{18}{5} = \frac{216}{25}$$

よって、
$$\triangle OAE = \triangle OAC - \triangle AEC = 12 - \frac{216}{25} = \frac{300 - 216}{25} = \frac{84}{25} = 3\frac{9}{25}$$
 cm²

別解 BO=OC=5cm, EC=
$$\frac{18}{5}$$
 cmより, OE= $5-\frac{18}{5}=\frac{7}{5}$, AE= $\frac{24}{5}$ cm よって, \triangle OAE= $\frac{1}{2}\times\frac{7}{5}\times\frac{24}{5}=\frac{84}{25}=3\frac{9}{25}$ cm²

答
$$\frac{3\frac{9}{25}}{25}$$
 cm² $24 \cdot PJ1$

- 5 1から13までの数字が1つずつかかれた13枚のカードがあります。それらをよくまぜて1列に並べました。1番右側にあるカードを取り除き、左から2枚ずつのカードをペアにして、それぞれのペアのカードにかかれている数の和をA、B、C、D、E、Fとしたとき、次のようになりました。
 - AはDの2倍
 - ② CはDの3倍
 - ③ BとFの和は31
 - ④ Bのカードはどちらも素数である
 - ⑤ Eは10より大きく15より小さい
 - ⑥ Fは取り除いたカードの数字と等しい
 - ⑦ AからFまですべて足すと80になる

次の問いに答えなさい。

(1) 取り除かれたカードの数字はいくつですか。

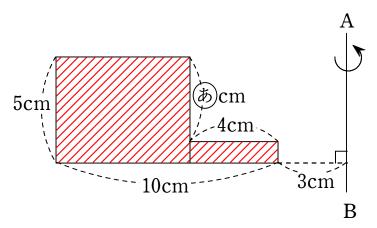
$$1+2+3+\cdots +13=91$$

 $91-80=11$

答 11

(2) Bの2枚のカードの数字はいくつですか。

Fは 11 であるから、Bは 20 となる。 Bの候補は、 (9,11),(8,12),(7,13) 条件④から、 (7,13) となる。


<u>答</u> 7 と 13

(3) Eはいくつですか。

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
A	C	D	E	
6	9	3	×	
8	12	4	×	
10	15	5	×	
12	18	6	13	
14	21	7	×	

答 13 24·PJ1

6 下の図の赤い斜線部分は長方形を2つ組み合わせた図形である。この赤い斜線部分を、直線ABの周りに1回転させてできる立体の体積は2009.6 cm³ である。円周率を3.14 として、次の問いに答えなさい。

(1)(あ)の長さを求めなさい。

$$2009.6 \div 3.14 = 640$$

$$13 \times 13 \times 5 - 7 \times 7 \times 5 + 7 \times 7 \times (5 - (5)) - 3 \times 3 \times (5 - (5)) = 640$$

$$(169 - 49) \times 5 + (49 - 9) \times (5 - (5)) = 640$$

$$600 + 40 \times (5 - (5)) = 640$$

$$40 \times (5 - (5)) = 40$$

$$5 - (5) = 1$$

(2) この立体の表面積を求めなさい。

上と下の面は

$$(13 \times 13 \times 3.14 - 3 \times 3 \times 3.14) \times 2 = (169 - 9) \times 3.14 \times 2$$

= 320×3.14

側面は

$$13 \times 2 \times 3.14 \times 5 + 7 \times 2 \times 3.14 \times 4 + 3 \times 2 \times 3.14 \times 1 = (130 + 56 + 6) \times 3.14$$

= 192×3.14

よって

$$320 \times 3.14 + 192 \times 3.14 = 512 \times 3.14$$

= 1607.68